Electric Actuators

MODULATING RANGE

BERNARD
MODULATING

SUMMARY

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERNARD classification</td>
<td>3</td>
</tr>
<tr>
<td>Terminology</td>
<td>4</td>
</tr>
<tr>
<td>Motor duty service</td>
<td>5</td>
</tr>
<tr>
<td>Positioning loops</td>
<td>6</td>
</tr>
<tr>
<td>Regulation modes</td>
<td>7</td>
</tr>
<tr>
<td>3 classes of actuators</td>
<td>8</td>
</tr>
<tr>
<td>Electronic positioner general functions</td>
<td>10</td>
</tr>
<tr>
<td>Specialized positioners</td>
<td>11</td>
</tr>
</tbody>
</table>
A modulating actuator has to be fully adapted to the duty given by the modulating loop. According to the duty or the functioning frequency, the actuator technology and its cost will be different; a choice has to be done within our 3 classes of modulating actuators.

CLASS III POSITIONING
- The actuator is able to reach an intermediate position with a sufficient precision (better than 2%).
- The motor is able to start 1200 times per hour with a duty cycle of 50%, as to say a start every 3 seconds. This starting frequency allows the process to stabilize a position, but shall not be kept permanently.
- A Class III actuator is designed for an average of 360 change of position a day.

Technology: A Class III actuator is selected in the On/Off actuators range.

Remark: If you need to use the actuator with an other behaviour, please consult us.

CLASS II PRECISION POSITIONING
- The actuator is able to reach an intermediate position with a good precision (better than 1%).
- The motor is able to start 1800 times per hour with a duty cycle of 100%.
- A Class II actuator is designed to move permanently each 2 or 3 seconds.

Technology: Actuator with high mechanical efficiency, special modulating motor, solid state relay control.

CLASS I FAST POSITIONING
- The actuator is able to reach an intermediate position with a precision of 0.5% or better.
- The actuator can move the valve, full stroke, very quickly.
- A Class I actuator is designed to move permanently.

Technology: Actuator with high mechanical efficiency, brushless electric motor with speed regulation. Includes PWM (Pulse Width Modulating) power electronics.

<table>
<thead>
<tr>
<th>Criterias</th>
<th>CLASS III</th>
<th>CLASS II</th>
<th>CLASS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulating type</td>
<td>POSITIONING</td>
<td>PRECISION POSI.</td>
<td>FAST POSITIONING</td>
</tr>
<tr>
<td>Precision of positioning</td>
<td>< 2%</td>
<td>< 1%</td>
<td>< 0.5%</td>
</tr>
<tr>
<td>Max number of starts per hour</td>
<td>1200</td>
<td>1800</td>
<td>No limits</td>
</tr>
<tr>
<td>Operating duty cycle</td>
<td>50 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Start : average for a day</td>
<td>360</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Positioning of a critical or unstable system</td>
<td>Unadvised</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
MODULATING

Terminology

■ PRECISION OF POSITIONING
This is the maximum deviation between the real position and the theoretical position, given as a % of the total stroke.

■ Hysteresis
This is the maximum deviation between the position achieved from rotation to open and the same position achieved from rotation to close, as a % of the full stroke.

As an example, partial test results are published in the table on the right to appreciate the "precision and hysteresis".

■ Resolution
This is the actuator movement obtained by the smallest possible input signal. The maximum value is given as a % of the full stroke.

■ Dead Band
The dead band is an adjustable value at the positioner. If the deviation between the signal and position is less than the dead band, the actuator will not move. Adjustment of the dead band is made to obtain the best compromise between precision and position (narrow dead band) and non-hunting of the actuator (large dead band).

■ Response Time
Is the time the actuator requires to travel to the requested position. To simplify, the operating time of the full stroke is taken into consideration.

■ Momentary Available Torque, Permanent Maximum Admissible Torque
To size the actuator, the two torques must be taken into consideration. Momentary torque is used for close tight operation. This torque is provided but should not be used for modulating duty. Permanent torque is the maximum torque the actuator can work in regulation.

■ Operating Time
This is the time the actuator needs to achieve a full stroke. Electric actuators provide the same operating time in opening and closing direction.

■ Stable System, Occasionally Unstable System or Unstable System
In electric modulating duty the motor has to withstand multiple starts, stops and changes in direction of rotation. For this, it is essential to know what working conditions are present before choosing the actuator.

The actuator travels to a position and may stay there several minutes without changing position. The displacements are of minor amplitude. Changes in direction of rotation are infrequent.

The actuator position may occasionally change due to external interference.

Frequent variations of positioning values requires the actuator to work with large and sustained movements.
Motor duty service

■ OPERATING CONDITIONS

● S1 : Continuous duty
 - Continuous operation at load over sufficient time for thermal equilibrium to be reached.

● S2 : Short time duty
 - Allows a sufficient rest period between operations for the motor to cool down.

● S3 : Intermittent periodic duty
 - Starting current does not significantly affect the temperature rise.
 - Maximum operating time to be specified.

● S4 : Intermittent periodic duty with starting
 - Repetition of cycles consisting of:
 • starting period D,
 • period of operation at constant load N,
 • rest period R.

- To be followed by the duty rating in %:
 \[
 \frac{M}{M + R} \times 100
 \]
 as well as the number of starts per hour

● S5 : Identical to S4, but with electrical braking

● S6 : Periodic continuous duty with intermittent load
 - Continuous operation with intermittent load.

● S7 : Periodic continuous duty with electrical braking
 - Identical to S5, but without rest period.

● S8 : Continuous operation periodic duty with related change of load and speed
 - Identical to S7, but with different rotation speeds.

● S9 : Duty with non-periodic variations in load and speed

● S10 : Operation at discrete constant loads
 - This duty consists of a maximum of 4 discrete load values (or equivalent loads), each value being applied for sufficient time to reach thermal balance.

■ APPLICATION FOR ACTUATORS

Actuators operate at S4 type of duty which requires that duty rating and the number of starts per hour be mentioned to complete operating conditions.

For ON-OFF applications, number of starts per hour may be low but the operating time long, therefore the motor temperature rise is mainly influenced by the duty cycle.

For modulating applications number of starts per hour may be high but the operating time short, therefore the motor temperature rise is mainly influenced by the number of starts/hour.
To maintain a physical value within acceptable parameters (for instance, pressure in the tank (fig. 1)), the pressure is continuously monitored by the sensor. This value is compared with the controller set point and any deviation results in movement of the regulating device until an equilibrium is reached.

OPEN LOOP
In the case of an open loop system (fig. 2), the regulating device operates according to a positioning law driven by a measured value which is independent from the deviation of the physical value to be set. For instance, for a measurement M1 of the sensor actuator, the position will be P1% and for a M2 measurement, the position will be P2%.

Any deviation between command and sensor signals causes the actuator to modulate.

CLOSED LOOP
In an open loop system all deviations or disturbances are ignored. To overcome this problem and maintain balanced conditions, a sensor C (fig. 1) monitors the situation. An internal loop is connected. Any deviation between command and sensor signals causes the actuator to modulate.

OVERLAPPED LOOP
The actuator can be controlled by the sensor provided the pulses are plus or minus, causing open or closed direction. This system is generally used where the actuator response time is long. In order to make the system more efficient an additional loop is connected.

The command signal, usually 4.20mA, is balanced against the valve position. The positioner is an integral part of the valve actuator.

This type of regulation will work only if the internal disturbance of the system is negligible.
PROPORTIONAL TYPE “P”
Positioning is achieved by the proportional displacement of the motorized valve with respect to the deviation between the position order and the measured value. An example of the system is shown by the sketch (fig. 4) where the valve closes progressively when the water level rises.

If there is a variation in the load (float weight), the water level will be established at a new value resulting in a permanent deviation of water level.

This deviation is a typical feature of the proportional control.

PROPORTIONAL AND INTEGRAL “P.I.”
To avoid the permanent deviation experienced with proportional control, an integral control is added.

The integral feature which ensures the control function of the motorized valve is proportional to the deviation position - position order is restored.

The use of proportional and integrated controls combine to give a reasonably fast response time, with the added benefits of stability from proportional control and precision from integrated control.

PROPORTIONAL INTEGRAL AND DERIVED “P.I.D.”
When a quicker reaction to a disturbance is required, a derived action can be added (if the actuator and the process permits it).

The derived action feature consists in that the position of the motorized valve is proportional to the speed variation of the deviation.

When the disturbance occurs, the derived action rectifies most of the disturbance encountered but only for a short moment.

The proportional positioning continues and the integral action finishes by eliminating the residual deviation.
3 classes of actuators

CLASS III ACTUATORS

designed to associate positioning control technology and economical objectives.

Based on the success of the BERNARD actuator’s technology, a complete range of actuators has been selected and tested under the positioning CLASS III criteria.

- 1200 starts/hour (360 starts/day in average),
- Large sized electro-mechanical reversing starter (INTEGRAL+ and POSIGAM+ versions),
- Position sensor by precision potentiometer.

CLASS III modulating motorisation may use 3 phase, single phase and direct current power supplies. The performance summary presents a large choice: quarter turn, multiturn, linear actuators, as well as electric fail safe spring return actuators.

CLASS II ACTUATORS

A complete actuator program ranging from direct quarter turn to linear actuators as well as rotating systems with operating levers.

- Powerful asynchrone type motor modulation technics with low inertia associated to a high mechanical efficiency is proof which guarantees a product particularly adapted to modulating requirements in all fields of industry with difficult environments.
- Ball bearings, planetary gears with satellites, machining technics of worm/wheel gears are reasons of optimum efficiency.
- The electric power parts were upgraded to the level of the actuator performance by replacing electric mechanical reversing starters by 3 phase or single phase solid state power relays. Thus, avoiding all risks of sparks and all risks of contacts sticking and obtaining a long life duration.
- Special care has been given to the position sensors, a basic element for positioning liability. Axis mounted on ball bearings and plastic tracks guarantee an excellent long life time (100 million possible operations).
- Modulating actuator up to 1800 starts/hour - 100% duty
- Complete solid state power control
- Position sensor plastic track potentiometer and with ball bearing mounting axis
- Multiturn and direct quarter turn actuators output shaft ball bearing mounted
- Manual declutchable handwheel
- MODUGAM+ integrated positioner on sole 3 phase or single phase supply (1) except for type OAP

COUPLINGS AND DIMENSIONS

All flanges and output shafts, as well as the overall dimensions, are identical to our SD-Range and ST-Range. For details consult the corresponding catalogues.

wiring diagram

Class III actuators can be supplied with 4-20 mA positioner type POSIGAM+. They are also available in standard design (without contactor) and with INTEGRAL+ design for remote control Open/Close/Stop.
CLASS I ACTUATORS
The range of the CLASS I actuators was designed to obtain a fast and precise operation of modulating valves. The positioner PRECIGAM together with the brushless motor actuator offer an extremely performant motorization for valves.

The special DC motor design without brushes is a reliable system requiring no maintenance. Thanks to the integrated numeric sensors, the control of speed and torque guarantee the modulation precision in spite of important torque variations during the stroke of the valve.

- Brushless motor with samarium-cobalt,
- Confirmed modulation module using the GAMX card,
- Motor control module controlling speed, current and torque,
- Power control module with wide pulse MOS technology, direct supply from 24 V to 500 V according to available power supply.

The technology of brushless motor application generally used with robots offers an alternative to pneumatic and hydraulic actuators and also to normal DC motors with brushes. The power supply may be 3 phase or single phase of voltages generally used in industry.

EASY TO INSTALL
The positioner is located in a metallic box with tight enclosure which can be placed near the actuator.
- Input signal 4-20mA,
- Sole power supply of motor and electronics : 3 phase, single phase and direct current.

The electronic modules include 4 cards for different functions.
- A power control card adapted to the available voltage,
- The CONT2 card controls the power control card and the total electrical separation between power and control circuitry.
- The CONT1 card, to control and adjust all the motor parameters. These adjustments are available for all types of valves and all response times. Adjustments are made in our works and no further correction on site is necessary.
- The GAMX card : positioner card for setting of the 0 and 100% of the stroke, same as the standard GAMX, L. BERNARD card.

STANDARD EQUIPMENT FOR PRECIGAM POSITIONER
- Adjustment of the proportional speed band
- Adjustment of the proportional torque band (for reversible actuators)
- Maximum torque
- Maximum speed
- Speed reduction at end of closing
- Torque limitation with control
- Torque holding on the motor after torque switch tripping (for reversible actuators)
- Input signal out of limits, 3 possible actions : actuator stays in last position, actuator goes to open position, actuator goes to close position
- Fault signalling :
 - torque limitor operation
 - thermal motor protection tripping,
 - power supply failure
- Signal of electronic torque limitor tripping
Electronic positioner general functions

CONTROL
- **REMOTE CONTROL**:
 - By proportional current: 4-20mA, 0-20mA, 4-12mA, 12-20mA
 - Voltage: 0-10V
- **By means of contacts**
 - External power supply: electronic board supplying power supply (24V)
- **By pulse signal**
 - One pulse for open, close or stop
- **By maintained signal**
 - Actuator continues to function as long as the signaling is maintained, stopping when released
- **ESD**
 - Emergency Shut Down for Open or Close.

INTERNAL MANUAL COMMAND
- For commissioning or test use
- Automatic calibration according to the selected signal

POSITION SIGNALING
Proportional signaling of position is of same scale as the control signal:

- **Example**:
 - Input signal: 4-12mA
 - Output signal: 4-12mA
 - Exception input signal: 0-10V
 - Output signal: 0-20mA

SIGNALS
- **FAULT RELAY**:
 - The board detects all malfunction or unavailabilities and communicates the information remotely:
 - Power supply failure or blown fuse
 - Loss of 1 phase in 3 PH
 - Thermal motor protection tripped
 - Selector in “Local” position
 - No 4-20 mA signal (not available in 0-10V or 0-20mA)
 - Choice possible between the following faults:
 - Torque limiter tripped not into account
 - Selector in “Local” position not into account
 - No signaling not into account
- **REMOTE SIGNALS**:
 - 4 informations to be chosen among 16 possible

PROTECTIONS
- **FUSES**:
 - Protect against short circuit.
- **MOTOR TEMPERATURE SENSOR**:
 - Efficient protection of motor against overheating. If the temperature in the winding is too high, motor supply is impossible and restart is possible only after decrease of temperature.
- **TORQUE LIMITER**:
 - The electronic board memorizes action of the torque limiter and forbids restarting in the same rotational direction. This system guarantees complete full stop even if the torque limiter pressure is released.
- **PHASE DISCRIMINATOR**:
 - Protects against wrong 3 phase connection included with automatic phase correction

OPTIONS
- **REMOTE INFORMATION**:
 - 3 informations for Open/Close/Supply
- **LOCAL INFORMATION**:
 - 3 LED’s for Open/Close/Supply
- **SOLID STATE RELAYS**
- **LOCAL CONTROL**:
 - **by pulse signal**: one pulse for open, close or stop
 - **by maintained signal**: actuator continues to function as long as the signaling is maintained, stopping when released
 - Local/remote/stop lockable **selector** in every 3 positions.
- **TIMING CONTROL**: This optional card will allow extension of the valve operation speed. The actuator operates by successive pulses adjusted at the card. One part of the stroke can have normal operating speed and the other part an extended speed control. An auxiliary limit switch gives the order to switch over from normal to slow speed. The adjustments are independent in open and close direction. The operating time for the full valve stroke can be very long. The device is used to avoid hammer effects when opening a valve on a line.
Specialized positioners

POSIGAM+ : POSITIONING EQUIPMENT FOR CLASS III ACTUATORS

POSIGAM+ has proven to be the most reliable positioning equipment for Class III actuators.

It includes:
- A GAM-K positioner
- A precision potentiometer of 1000 Ω, linearity < 0.5%
- A contactor based power circuit

MODUGAM+ : POSITIONING EQUIPMENT FOR CLASS II ACTUATORS

- A positioner for intense duty cycles
- Complete solid state power control
- Plastic track potentiometer - 100 million operations

MODUGAM+ includes all of the GAM-K equipment and options. MODUGAM+ is related to Modulating Class II actuators of the OAP, MA, MB and UX type, sole actuators able to withstand the operating frequency imposed by this type of modulation.

PRECIGAM : POSITIONING EQUIPMENT FOR CLASS I ACTUATORS

- Fast and precise positioning
- Speed control module for a brushless DC motor with samarium cobalt magnets
- Power control module with wide pulse MOS technology
- Direct power supply: 3 phase, single phase or direct current 24 to 500 V.

Various operations are available:
- Adjustment of the proportional speed band
- Adjustment of the proportional torque band (for reversible actuators)
- Maximum torque (electronic)
- Maximum speed
- Speed reduction at end of closing
- Torque limitation with control
- Torque holding on the motor after torque switch tripping (for reversible actuators)
- Input signal out of limits, 3 possible actions: actuator stays in last position, actuator goes to open position or actuator goes to close position.

and also:

INTELLI+

INTELLI+ is equipped as a standard with the positioner function that drives the valve disc to the chosen position. An additional analog board can be added to drive proportionally the actuator with an analog input signal in current (ex. 4-20mA) or in voltage (ex. 0-10V).

Setting of the positioner is automatic. However, the dead band value can be modified by the user. This Analog input signal interface provides torque and position transmission and is electrically isolated from the input signal.
At Your Service Over The World

AUSTRALIA
PEGLER BEACON AUSTRALIA Pty Ltd
25 South Street Rydalmere
NSW 2116 AUSTRALIA
Tel.: + 61 2 98 41 23 45
Fax.: + 61 2 96 84 64 39

AUSTRIA
IPU ING PAUL UNGER
Hardmutthagasse 53
1100 WIEN
Tel.: +43 1 602 41 49
Fax.: +43 1 603 29 43

BELGIUM
christian.baert@bernard-benelux.com
Steenbaloelaan 5
1145 Brussels
Tel.: +32 2 34 12 22
Fax.: +32 2 34 72 843

BRAZIL
Bernard Benelux SA
3 Fl. SungWon Building
Villa N°5 P.O. box 34079, 39th Street
Al Jaffiya Compound, Al Jaffiya
DUBAI - U.A.E.
Tel.: +971 4 39 80 726
Fax.: +971 4 39 80 726

CHINA
office@tadella.com
www.tadella.com
TADELLA LIMITED
B701, Hon-an mansion,
188 Chaosei Street, Dongcheng District,
BEIJING - CHINE 100010
Tel.: +86 10 65 17 06 01 / 0602
Fax.: +86 10 65 17 06 03

CZECH REPUBLIC
bmno@fluidobohemia.cz
www.soffco.com
FLUIDTECHNIK BOHEMA s.r.o.
Olomouc 87
627 00 Brno
Tel.: +420 548 233-3
Fax.: +420 548 23 238

DENMARK
jnh@armatec.dk
www.armatec.dk
ARMATEC A/S
Mjølnerseg 4-8
DK 2600 Glostrup
Tel.: +45 46 96 00 00
Fax.: +45 46 96 00 01

FINLAND
info@sofco.fi
www.sofco.fi
OY Soffco AB
Karapeltontie 11
FIN-02610 ESPOO
Tel.: +358 9 54 04 620
Fax.: +358 9 54 04 6250

GERMANY
bernard@deufera.de
www.deufera.de
DEUFRAGMBH
Kasinistraße 22
5840 TROISDORF
Tel.: +49 22 41 98 340
Fax.: +49 22 41 98 34 44

GREECE
yanapis@accc.co.gr
www.kaidos.gr
PIAMS
3 Pendelis Str. Pallini
153 51 Athènes - Hellas
Tel.: +30 2 10 66 69 129
Fax.: +30 2 10 66 69 130

HUNGARY
apagy@elender.hu
www.elender.hu
APAGY TRADEIMP KFT
1145 Budapest
Stefania u. 63c.
Tel.: +36 1 223 1058
Fax.: +36 1 273 0800

INDIA
mail@bbgt.com
www.bbgt.com
INSTRUMENTATION LTD
Kanjikode West 678623
PALGHAT-KERALA
Tel.: +91 491 56 61 27 / 56 61 28
Fax.: +91 491 56 61 35 / 56 62 40

ITALY
vman@pecchiney.com
Viale F. Restelli 5
20124 MILAN
Tel.: +39 02 66 99 31
Fax.: +39 02 50 81 513

JAPAN
yoshino.shimizu@pecchiney.com
www.pecchiney.com
PECCHINEY JAPAN
29 Fl. Shinjuku Mitsui Bldg
2-1-1 Nishi Shinjuku, Shinjuku-ku, Tokyo
163-0429 JAPON
Tel.: +81 3 33 49 66 39
Fax.: +81 3 33 49 67 50

KOREA (Rep of)
bernard@humanitic.com
www.humanitic.com
HUMAN INFRASTRUCTURE TECH.
3 Fl. SungWon Building
831-1 Bangbae-Dong, Seocho-Gu
SEOUL 137-632
Tel.: +82 2 532 2604
Fax.: +82 2 3478 7089

MALAYSIA
tomeng@pc.jaring.my
www.lowes.com.my
ACTUATION & CONTROLS ENGINEER
7, Jalan Bayu 25 - Taman Perindustrian.
Tampoi Jaya - 81200 JOHOR BAHRU
Tel.: +60 7 23 50 277 / 23 50 281
Fax.: +60 7 23 50 280 / 23 50 285

MIDDLE-EAST
bernard@emirates.net.ae
www.emirates.net.ae
BERNARD MIDDLE-EAST
Villa N°5 P.O. box 34079, 39th Street
Al Jaffiya Compound, Al Jaffiya
DUBAI - U.A.E.
Tel.: +971 4 39 80 726
Fax.: +971 4 39 80 726

THE NETHERLANDS
bernard.benelux@12move.nl
www.bernard.nl
BERNARD BENELUX NV
Sophaiaanlaan 5
3542 AR UTRECHT
Tel.: +31 30 24 14 700
Fax.: +31 30 24 13 949

PORTUGAL
import.export@pinhol.com.pt
www.pinhol.com.pt
PINHOL, GOMES & GOMES LDA.
Caminho dos Confeiteiros, 41 - 41 A
Portela de Carnaxide
2790-051 Carnaxide
Tel.: +351 21 425 68 50
Fax.: +351 21 425 68 59

FINLAND
bernard@pinhol.com.pt
www.bernard.nl
BERNARD SERVOMOTORES
C/ Valentin Beato, 11 - 1°D
26037 MADRID
Tel.: +34 91 30 41 139
Fax.: +34 91 32 73 442

SINGAPORE
acessin@sgnet.com.sg
www.buddhism.org.sg
ACTUATION & CONTROLS ENG. (ASIA)
Block 2 Bukit Batok Street 24
N07-19 Skytech
8569840
Tel.: +65 65 604 227
Fax.: +65 65 650 224

SWITZERLAND
info@matokem.com
www.matokem.com
MATOKEM AG
Binningerstrasse 86
CH - 4123 ALBSCHWIL
Tel.: +41 61 483 15 40
Fax.: +41 61 483 15 42

SWEDEN
christine.noren@fagerberg.se
www.fagerberg.se
BERNARD SOUTHEAST ASIA
1522 MOSS
Postbox 12105
40241 GOTEBORG
Tel.: +46 31 69 37 00
Fax.: +46 31 69 38 00

THAILAND
pavindoc@scl.th.com
www.pavin.co.th
BERNARD SOUTHEAST ASIA
Liaison office Thailand
Bangkok 10110 Thailand
Tel.: + 66 1 814 57 30
Fax.: +66 2 255 26 38

TURKEY
citmek@cisilat.com.tr
www.cisilat.com
CITMEK A.S.
Gencilik Caddesi N°9 Isiklar Binası
TANDOĞAN
06570 - ANKARA
Tel.: +90 312 232 67 00
Fax.: +90 312 232 53 64

UNITED ARABS EMIRATES
emirates@emirates.net.ae
www.emirates.com
UNITED KINGDOM
enquiries@coozafe.co.uk
www.coolefe.co.uk
UNITED KINGDOM
EMIRATES HOLDINGS
P.O. Box 984
ABU DHABI
Tel.: +971 9 22 464 373
Fax.: +971 9 22 464 66

OCEANIA
bernhard.sales@bernardcontrols.com
www.bernardcontrols.com
BERNARD CONTROLS Inc
15740 Park Row, Suite 101
HOUSTON - TEXAS 77084
Tel.: +1 281 578 66 66
Fax.: +1 281 578 27 97

L. BERNARD
4 rue d'arsonval - BP 91 - 95505 GONESSE. France
Tel. +33.1.34.07.71.00 - Fax +33.1.34.07.71.01
E-mail : mail@bernard-actuators.com - Internet : http://www.bernard-actuators.com